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In this paper, we present an efficient warping model for nonlinear elastoplastic torsional analysis of com-
posite beams developed based on Benscoter warping theory. A major challenge here is how to account for
the evolution of warping functions efficiently as materials yield at various locations at different rates.
Here, we propose to describe the warping displacement using a linear combination of two asymptotic
warping functions with corresponding warping degrees of freedom. The asymptotic warping functions
are calculated only once initially by solving the extended St. Venant equations under two material con-
ditions: purely elastic condition and fully plastic condition when no material point in the cross-section
remains elastic. Only the warping degrees of freedom are updated incrementally and iteratively in anal-
ysis without evaluating the warping functions again. The proposed warping model demonstrates an
excellent performance in several numerical examples despite its simplicity.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Composite beams have been widely used in many engineering
fields due to their excellent mechanical properties such as high
specific stiffness and strength and improved fracture toughness
as well as the design flexibility to meet the target properties [1–
3]. It is essential for proper applications to understand their nonlin-
ear mechanical behaviors under various structural loads consider-
ing the complexity in geometry and material composition.
Numerous numerical methods have been developed for analysis
of composite beams with a particular focus on the formulation of
efficient beam models [4–16], where incorporating the warping
effect efficiently into the beam formulation is crucial as it affects
significantly the nonlinear behavior of composite beams particu-
larly with arbitrary cross-sections. Although considerable research
has been devoted to develop the warping model for composite
beams under torsion [17–24], investigations have been confined
to elastic deformation and little attention has been paid to elasto-
plastic warping models.

The most challenging part in formulating a torsion theory
including warping under elastoplastic condition is how to reflect
the change of warping functions effectively as plastic deformations
accumulate at various rates and locations. Sapountzakis and Tsipi-
ras [25] looked into this problem for the first time and proposed a
warping function considering the progress of yield regions applied
to the boundary element method. However, their formulation is
limited to prismatic beams under pure torsional moments only.
Furthermore, the warping function should be evaluated newly in
every incremental step, which is computationally expensive.

In this paper, we present an efficient approach to considering
the warping effect in nonlinear elastoplastic torsional analysis of
3D composite beams using the finite element method. The pro-
posed method employs the essential philosophy of Benscoter-
type warping consideration [26–28] and the extended warping
theory used for elastic deformation [19,21,24]. It describes the
warping displacement using two asymptotic warping functions
obtained by solving the extended St. Venant equations assuming
a purely elastic condition where no plastic deformation occurs
and a fully plastic condition where every material point in the
cross-section experiences the plastic deformation. These warping
functions are calculated only once initially and used without ree-
valuation during the solution procedure. Only the corresponding
warping degrees of freedom (DOFs) are updated incrementally
and iteratively. Moreover, the formulation is dependent neither
on the warping boundary condition (free or constrained) nor on
the topology of cross-sections (simply- or multiply-connected).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2017.07.041&domain=pdf
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This warping model is incorporated into our continuum mechanics
based beam element [16–17,28,31] so that important nonlinear
effects such as Wagner strain and von Kármán strain can be natu-
rally considered. Since the formulation is based on continuum
mechanics, it is capable of handling complicate 3D composite
beams with arbitrary cross-sectional shapes in geometric and/or
materially nonlinear analysis.

This paper is organized as follows. We present the kinematic
description of the proposed beam element including the warping
displacements in Section 2 and how to evaluate the asymptotic
warping functions in Section 3. In Section 4, we provide the beam
finite element formulation for nonlinear analysis followed by sev-
eral numerical examples in Section 5 to demonstrate the efficiency
and accuracy of the proposed method. Finally, we conclude with
summary and future directions in Section 6.

2. Kinematic description

We begin with describing the kinematics of the continuum
mechanics based beam element [16,28,31] that is directly degener-
ated from a solid finite element model consisting of partitioned
sub-beams (Fig. 1). The position vector of a material point in
sub-beam m at time t, txðmÞ, is given as

txðmÞ ¼
Xq
k¼1

hkð1Þtxk þ
Xq
k¼1

hkð1Þ
X�q
j¼1

hjðn;gÞ�yjðmÞ
k

tVk
�y

þ
Xq
k¼1

hkð1Þ
X�q
j¼1

hjðn;gÞ�zjðmÞ
k

tVk
�z ð1Þ

where hkð1Þ is the 1D shape function along the longitudinal axis, txk

is the position vector of beam node k, tVk
�y and

tVk
�z are the orthonor-

mal director vectors of the cross-section at beam node k, �yjðmÞ
k and

�zjðmÞ
k are the coordinates of cross-sectional node j in sub-beam m
with the corresponding 2D shape function hjðn;gÞ, q is the total
number of nodes of a beam element while �q is the total number
of nodes of a cross-sectional element, and 1, n, and g in parenthesis
are natural coordinates. This kinematic description can represent
Timoshenko’s six deformation modes of a beam: one stretching
mode, two transverse shearing modes, one twisting mode, and
two bending modes.

In order to consider the warping effect, we use an enriched
kinematic description based on Benscoter warping theory that
can be written for sub-beam m as
degener
)(mt x

sub-be

Fig. 1. The direct degeneration concept of the cont
txðmÞ
e ¼ txðmÞ þ txðmÞ

w with txðmÞ
w ¼

Xq
k¼1

hkð1Þ
X�q
j¼1

hjðn;gÞf jðmÞtak
tVk

�x ð2Þ

where f jðmÞ is the value of the warping function at cross-sectional
node j obtained by solving the extended St. Venant equations

[19,21,24], tak is the warping DOF at beam node k, and tVk
�x is the

warping director vector orthonormal to tVk
�y and tVk

�z . This enriched
description can represent the continuous and compatible 3D kine-
matics of the warping deformation through interpolation of the
warping function along the longitudinal direction using the nodal
warping DOF and director vector. It is noteworthy that here the
warping function is assumed to remain unchanged as in Benscoter
warping theory. In other words, only the magnitude and the direc-
tion of the warping displacements change during deformation while
their spatial distribution on a cross-section is preserved. This rather
simple enrichment for the warping deformation has proven to be
successful to describe the nonlinear torsional behavior of composite
beams in elastic regime [16,17,19,20,26].

The above kinematic description is, however, not able to
describe the warping behavior of composite beams properly when
materials begin to yield. It is because the plastic deformation may
occur at different locations at different rates leading to inhomoge-
neous and time-varying distribution of material properties on the
cross-section. As a result, the warping function itself evolves with
the plastic deformation since the extended St. Venant equations
determining the warping function are dependent on the spatial
variation of moduli for composite materials. Therefore, we need
to update, in principle, the warping function continuously by solv-
ing the extended St. Venant equations, which is computationally
inefficient.

To circumvent this problem, we propose a simple extension of
the above kinematic description for elastoplastic analysis by
approximating the warping displacement on a cross-section as a
linear combination of two asymptotic warping functions. The posi-
tion vector using the newly proposed warping model can be writ-
ten as

txðmÞ
e ¼ txðmÞ þ txðmÞ

w with txðmÞ
w

¼
Xq
k¼1

hkð1Þ
X�q
j¼1

½hjðn;gÞf jðmÞ
e

tae
k þ hjðn;gÞf jðmÞ

p
tap

k �tVk
�x; ð3Þ

where f jðmÞ
e and f jðmÞ

p are the values of the asymptotic elastic and
plastic warping functions, respectively, at cross-sectional node j,
and tae

k and tap
k are the corresponding warping DOFs at beam node
ation

k
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k. The asymptotic warping functions are calculated only once ini-
tially and remain unchanged during nonlinear analysis so that the
warping DOFs and director vectors are only updated incrementally
and iteratively. The elastic warping function is calculated by solving
the extended St. Venant equations using the elastic moduli while
the elastoplastic tangent moduli are used instead for the calculation
of the asymptotic plastic warping function assuming that all mate-
rial points deform plastically as described in detail in the following
section.

3. Calculation of the asymptotic warping functions

In this section, we present our finite element procedure to cal-
culate two asymptotic warping functions required to construct the
warping displacement in Eq. (3) before performing nonlinear anal-
ysis. Two Cartesian coordinate systems are defined on the cross-
section at beam node k: ð�y;�zÞwith its origin at the beam node posi-

tion Ck and ðŷ; ẑÞ with its origin at the twist center Ĉk denoted as
ðk�y; k�zÞ (Figs. 1 and 2). The composite cross-section is discretized

by sub-domains XðmÞ, each of which is modeled as an elastoplastic
material as shown in Fig. 3.
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Fig. 2. A discretized cross-section at beam node k.
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Fig. 3. An elastoplastic material law. Red lines represent the asymptotic elastoplastic tan
reader is referred to the web version of this article.)
3.1. Elastic warping function

To calculate the asymptotic elastic warping function f jðmÞ
e in Eq.

(3), we assume that the entire cross-sectional domains are under

purely elastic condition and sub-domain XðmÞ has the elastic and

shear moduli, EðmÞ
e and GðmÞ

e , respectively. Then, the discretized form
of the extended St. Venant equations [19,21,24] on a beam cross-
section can be written for each sub-domain as

GðmÞ
e

@2f ðmÞ
e

@ŷ2
þ @2f ðmÞ

e

@ẑ2

 !
¼ 0 in XðmÞ ð4aÞ

GðmÞ
e

@f ðmÞ
e

@nðmÞ ¼ GðmÞ
e nðmÞ

�y ẑðmÞ � nðmÞ
�z ŷðmÞ

� �
on CðmÞ ð4bÞ

where f ðmÞ
e is the elastic warping function and nðmÞ ¼ ½nðmÞ

�y nðmÞ
�z �T is

a unit vector normal to the boundary CðmÞ. The weak form of Eq. (4a)
can be obtained by introducing a virtual elastic warping function

df ðmÞ
e and summing the equations over sub-domains as

Xn
m¼1

Z
XðmÞ

GðmÞ
e

@f ðmÞ
e

@ŷ
@df ðmÞ

e

@ŷ
þ @f ðmÞ

e

@ẑ
@df ðmÞ

e

@ẑ

 !
dXðmÞ

" #

¼
Xn
m¼1

Z
CðmÞ

GðmÞ
e

@f ðmÞ
e

@nðmÞ df
ðmÞ
e dCðmÞ

" #
: ð5Þ

Incorporating Eq. (4b) into Eq. (5), the variational form of the
extended St. Venant equation can be derived asXn
m¼1

Z
XðmÞ

GðmÞ
e

@f ðmÞ
e

@ŷ
@df ðmÞ

e

@ŷ
þ @f ðmÞ

e

@ẑ
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e

@ẑ

 !
dXðmÞ
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Z
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e ðnðmÞ

�y ẑðmÞ � nðmÞ
�z ŷðmÞÞdf ðmÞ

e dCðmÞ
� �

: ð6Þ

Since ŷ ¼ �y� k�y and ẑ ¼ �z� k�z, Eq. (6) becomes

Xn
m¼1

Z
XðmÞ

GðmÞ
e

@f ðmÞ
e

@�y
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e

@�y
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e
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e
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 !
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" #

þ
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Z
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e k�zn

ðmÞ
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e dCðmÞ
� �

�
Xn
m¼1

Z
CðmÞ

GðmÞ
e k�yn

ðmÞ
�z df ðmÞ

e dCðmÞ
� �

¼
Xn
m¼1

Z
CðmÞ

GðmÞ
e ðnðmÞ

�y �zðmÞ � nðmÞ
�z �yðmÞÞdf ðmÞ

e dCðmÞ
� �

: ð7Þ

Applying the zero bending moment conditions (Mẑ ¼ Mŷ ¼ 0) for
beams under pure torsion gives
)(m
epG

)(m
eG
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gent moduli. (For interpretation of the references to colour in this figure legend, the
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Xn
m¼1

Z
XðmÞ

EðmÞ
e f ðmÞ

e ð�y� �yaveÞdXðmÞ
� �

¼ 0; ð8aÞ

Xn
m¼1

Z
XðmÞ

EðmÞ
e f ðmÞ

e ð�z� �zaveÞdXðmÞ
� �

¼ 0; ð8bÞ

where ð�yave; �zaveÞ represents the centroid of the cross-section writ-
ten as

�yave ¼

Xn
m¼1

Z
XðmÞ

�ydXðmÞ

Xn
m¼1

Z
XðmÞ

dXðmÞ
and �zave ¼

Xn
m¼1

Z
XðmÞ

�zdXðmÞ

Xn
m¼1

Z
XðmÞ

dXðmÞ
ð9Þ

In sub-domain XðmÞ, we interpolate the warping function as

f ðmÞ
e ¼ HðmÞFðmÞ

e ¼ HðmÞLðmÞFe; ð10Þ
where

HðmÞ ¼ h1ðn;gÞ h2ðn;gÞ � � � h�qðn;gÞ
� �

; ð11aÞ

FðmÞ
e ¼ f 1ðmÞ

e f 2ðmÞ
e � � � f

�qðmÞ
e

h iT
; ð11bÞ

Fe ¼ f 1e f 2e � � � f le

h iT
: ð11cÞ

Here, LðmÞ is the standard assemblage Boolean matrix for cross-
sectional elementm that relates FðmÞ

e , a vector containing the values

of the elastic warping function at the nodes in XðmÞ, to Fe, a vector
with the values of the elastic warping function at the nodes in the
entire cross-section. hjðn;gÞ is the 2D shape function corresponding
to cross-sectional node j and l denotes the total number of cross-
sectional nodes.

Then, we can obtain the final set of equations in matrix form
used to calculate the nodal values of the elastic warping function
and the coordinates of the twist center simultaneously as

K N�y N�z

H�y 0 0
H�z 0 0

2
64

3
75

Fe

k�z
k�y

2
64

3
75 ¼

B
0
0

2
64

3
75; ð12Þ

where

K ¼
Xn
m¼1

Z
XðmÞ

GðmÞ
e LðmÞT @HðmÞT

@�y
@HðmÞ

@�y
þ @HðmÞT

@�z
@HðmÞ

@�z

 !
LðmÞdXðmÞ

" #
;

ð13aÞ

N�y ¼
Xn
m¼1

Z
XðmÞ

GðmÞ
e nðmÞ

�y LðmÞTHðmÞT dXðmÞ
� �

; ð13bÞ

N�z ¼
Xn
m¼1

Z
XðmÞ

GðmÞ
e nðmÞ

�z LðmÞTHðmÞT dXðmÞ
� �

; ð13cÞ

B ¼
Xn
m¼1

Z
CðmÞ

GðmÞ
e ðnðmÞ

�y �zðmÞ � nðmÞ
�z �yðmÞÞLðmÞTHðmÞT dCðmÞ

� �
; ð13dÞ

H�y ¼
Xn
m¼1

Z
XðmÞ

EðmÞ
e ð�y� �yaveÞHðmÞLðmÞdXðmÞ

� �
; ð13eÞ

H�z ¼
Xn
m¼1

Z
XðmÞ

EðmÞ
e ð�z� �zaveÞHðmÞLðmÞdXðmÞ

� �
: ð13fÞ
3.2. Plastic warping function

The procedure to calculate the asymptotic plastic warping func-

tion f jðmÞ
p in Eq. (3) is the same as the one for the elastic warping

function except that elastoplastic tangent moduli must be used
instead of elastic ones in Eq. (13) assuming that sufficiently large
plastic deformations are developed in the entire cross-sectional
domains. The asymptotic elastoplastic tangent moduli EðmÞ

ep and

GðmÞ
ep , for sub-domain XðmÞ can be defined analytically using the con-

dition where either uniaxial tension or pure shear is applied to the
material, respectively (Fig. 3). To illustrate, theses moduli for mate-
rials that can be modeled using the von Mises yield criterion with
the associated flow rule and the isotropic hardening can be
obtained as follows.

The von Mises yield function UðmÞ with an isotropic hardening
model can be written as

UðmÞð~rðmÞ;rðmÞ
y Þ ¼ ~rðmÞ � rðmÞ

y ¼ 0 ð14aÞ

with ~rðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rðmÞ

ij rðmÞ
ij � 1

2
ðrðmÞ

ij Þ2
r

ð14bÞ

where ~rðmÞ denotes the effective stress and rðmÞ
y is the yield stress

which is given as a function of an internal hardening variable such

as the equivalent plastic strain ~eðmÞ
p defined as

~eðmÞ
p ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_eðmÞ
p;ij

_eðmÞ
p;ij

r
dt; ð15Þ

in which _eðmÞ
p;ij is the plastic strain rate.

Then, EðmÞ
ep can be obtained by assuming an uniaxial tension case

where the uniaxial stress rðmÞ and strain eðmÞ are only considered
such that the von Mises effective stress and strain are simplified
as ~rðmÞ ¼ rðmÞ and ~eðmÞ ¼ eðmÞ, respectively. The elastoplastic tan-
gent modulus becomes

EðmÞ
ep ¼ @rðmÞ

@eðmÞ : ð16Þ

Under plastic flow condition, the value of the yield function

remains zero leading to rðmÞ ¼ rðmÞ
y . Hence, if we define the harden-

ing modulus which would be a function of the equivalent plastic
strain as

HðmÞ ¼ @rðmÞ
y

@eðmÞ
p

¼ @rðmÞ

@eðmÞ
p

ð17Þ

and use EðmÞ
e ¼ @rðmÞ=@eðmÞ

e , then Eq. (16) can be written as

EðmÞ
ep ¼ HðmÞEðmÞ

e

HðmÞ þ EðmÞ
e

: ð18Þ

Similarly, GðmÞ
ep can be obtained by assuming a pure shear case

where the shear stress sðmÞ and strain cðmÞ on a plane are only
considered resulting in ~rðmÞ ¼

ffiffiffi
3

p
sðmÞ and ~eðmÞ ¼ cðmÞ=

ffiffiffi
3

p
. The

elastoplastic shear tangent modulus becomes

GðmÞ
ep ¼ @sðmÞ

@cðmÞ : ð19Þ

Since the hardening modulus is the same as in the previous uniaxial
tension case

@sðmÞ

@cðmÞ
p

¼ @~rðmÞ=
ffiffiffi
3

p
ffiffiffi
3

p
@~eðmÞ ¼ 1

3
HðmÞ ð20Þ
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and @sðmÞ=@cðmÞ
e ¼ GðmÞ

e , Eq. (19) can be written as

GðmÞ
ep ¼ HðmÞGðmÞ

e

HðmÞ þ 3GðmÞ
e

: ð21Þ

Finally, we can compute the asymptotic plastic warping func-

tion Fp ¼ ½ f 1p f 2p � � � f lp �
T
by solving Eq. (12) with the substitu-

tion of EðmÞ
ep and GðmÞ

ep in Eqs. (18) and (21) for EðmÞ
e and GðmÞ

e in Eq. (13).

4. Beam finite element formulation

To obtain the nonlinear elastoplastic response of composite
beams, we use the total Lagrangian formulation for the beam ele-
ment defined in the local Cartesian coordinate system [29–31]
given byZ

0V

�Cep
ijkl0

�eijd0�ekld0V þ
Z

0V

t
0
�Sijd0�gijd0V þ

Z
0V

t
0
�Sijd0 �jijd0V ¼ tþDtR

�
Z

0V

t
0
�Sijd0�eijd

0V ; ð22Þ

in which 0�eij is the linear strain term from the first order part of the
incremental Green-Lagrange strain, 0�gij is the nonlinear strain term
from the second order part of the incremental Green-Lagrange
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strain, 0�jij is the nonlinear strain term from the second order rota-
tional displacements, 0V is the volume of a beam element at time 0,
tþDtR is the external virtual work due to the applied surface trac-
tions and body forces, and �Cep

ijkl and t
0
�Sij denote the elastoplastic

stress-strain law and the second Piola-Kirchhoff stress, respectively.

The covariant Green-Lagrange strain components t
0e

ðmÞ
ij for sub-

beam m are defined as

t
0e

ðmÞ ¼ t
0e

ðmÞ
11 2t

0e
ðmÞ
12 2t

0e
ðmÞ
13

h iT
with

t
0e

ðmÞ
ij ¼ 1

2
ðtgðmÞ

i � tgðmÞ
j � 0gðmÞ

i � 0gðmÞ
j Þ

ð23aÞ

in which

tgðmÞ
i ¼ @txðmÞ

@ri
with r1 ¼ 1; r2 ¼ n; and r3 ¼ g: ð23bÞ

Note that the other strain components are assumed by zero
through the kinematic assumption of Timoshenko beam theory
[29–31]. In order to avoid shear and membrane locking phenom-
ena, we use the assumed covariant Green-Lagrange strain compo-
nents instead,

t
0e

ASðmÞ ¼ t
0e

ASðmÞ
11 2t

0e
ASðmÞ
12 2t

0e
ASðmÞ
13

h iT ð24Þ
0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

0.4

0.8

1.2

)( mkNMx

(b)

W
ar

p
in

g
D

O
F

Elastic warping DOF
Plastic warping DOF

Elastic
warping
function

Plastic
warping
function

Case 2
0112H H

(d)

Elastic warping DOF
Plastic warping DOF

Elastic
warping
function

Plastic
warping
function

Case 4
5012H H

Solid element  model

Present beam model

mkN5 mkN10 mkN20

mkN5 mkN10 mkN20

)( mkNMx

W
ar

p
in

g
D

O
F

Solid element  model

Present beam model

mkN5 mkN10 mkN20

mkN5 mkN10 mkN20

ments on a cross-section (right) at x ¼ 1m in the double layered beam problem.
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by employing the well-established MITC (Mixed Interpolation of
Tensorial Components) scheme [31–33]. The strain components
are then transformed into the local Cartesian coordinate system
using

t
0
�eðmÞ ¼ t

0
�eðmÞ
11 2t

0
�eðmÞ
12 2t

0
�eðmÞ
13

h iT
with

t
0
�eðmÞ
ij ð0ti � 0tjÞ ¼ t

0e
ASðmÞ
kl ð0gkðmÞ � 0glðmÞÞ;

ð25Þ

where the base vectors of the local Cartesian coordinate system are
defined as

0t1 ¼ hkð1Þ0Vk
�x ;

0t2 ¼ hkð1Þ0Vk
�y and 0t3 ¼ hkð1Þ0Vk

�z : ð26Þ

and 0giðmÞ represent the contravariant base vectors satisfying

0giðmÞ � 0gðmÞ
j ¼ dij; ð27Þ

in which dij denotes the Kronecker delta (dij ¼ 1 if i ¼ j, and 0 other-
wise). They are split into elastic components andplastic components,

t
0
�eðmÞ ¼ t

0
�eðmÞ
e þ t

0
�eðmÞ
p : ð28Þ

so that the second Piola-Kirchhoff stresses are calculated using

t
0
�S
ðmÞ ¼ �CðmÞ

e
t
0
�eðmÞ
e ð29aÞ
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0
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ðmÞ ¼ t

0
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ðmÞ
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Conventional implicit return mapping algorithm is used for their
determination [31,34–36].The incremental DOFs of a q-node beam
element are

0U ¼ 0U
T
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q
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Fig. 7. Reinforced wide-flange beam problem (unit: m): (a) beam model (two beam elem
(b) solid model (4000 solid elements, 14,553 DOFs in total).
in which 0Uk is a vector of the nodal DOFs at beam node k consisting
of eight (three translations, three rotations, and two warping) DOFs.
To update properly the director vectors considering a large rotation,
the finite rotation matrix is employed here
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Then, the incremental strains in Eq. (22) can be written as

0�e
ðmÞ
ij ¼ �BðmÞ

ij 0U; ð32aÞ

0�gðmÞ
ij ¼ 1

2 0U
T
1
�NðmÞ
ij 0U; ð32bÞ

0�jðmÞ
ij ¼ 1

2 0U
T
2
�NðmÞ
ij 0U ð32cÞ

where �BðmÞ
ij , 1 �N

ðmÞ
ij and 2

�NðmÞ
ij are matrices that relate the incremental

strains to the incremental DOFs vector. The detailed form of these
matrices is available in Ref. [31]. Substituting Eq. (32) into Eq.
(22) leads to the following discretized equations
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ents along the beam axis, nine cubic cross-sectional elements, 24 DOFs in total) and
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where 0V ðmÞ is the initial volume of the sub-beam m and
0V ¼Pn

m¼1
0V ðmÞ. Finally, the incremental equilibrium equations to

be solved can be written as

tK0U ¼ tþDtR � t
0F with tK ¼ tKL þ t

1KNL þ t
2KNL; ð34Þ

where

tKL ¼
Xn
m¼1

Z
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ij
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�BðmÞ
kl dV ðmÞ

; ð35aÞ
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Fig. 8. Results of the reinforced wide-flange beam problem: (a) moment-angle curves an
beam model and (c) the solid model.
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5. Numerical examples

In this section, we demonstrate the performance of the pro-
posed warping model by solving several numerical examples. The
first example investigates the performance of the proposed warp-
ing formulation for various hardening moduli of composite materi-
d the distribution of von Mises stresses at x ¼ 0:5m obtained using (b) the present
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als. The elastoplastic response of a reinforced wide-flange beam is
then investigated in detail followed by our test of the beam in
highly nonlinear post-buckling problems. Finally, the results for a
beam under cyclic loadings are presented.

The standard full Newton-Raphson iterative scheme is
employed to solve Eq. (34) for these nonlinear problems. Two
and sixteen gauss quadrature points are used for numerical inte-
gration along the beam axis and within the cross-section, respec-
tively. Here, we use a linear isotropic hardening model for
illustration purposes within the von Mises plasticity so that the
asymptotic plastic tangent moduli in Eqs. (18) and (21) become
constant. Results obtained using the present beam model are com-
pared with those calculated using a 6-DOF beam model, a 7-DOF
beam model and a reference 3D solid model where the 6-DOF
beam model represents a conventional Timoshenko beam without
the warping effect and the 7-DOF beammodel is different from the
present beam model in that it considers the elastic warping func-
tion only. The reference solutions with a 3D solid model are
obtained by using commercial finite element analysis software,
ADINA [37].

5.1. Double layered beam problem

We consider a straight cantilever beam with double layered
rectangular cross-section whose length L is 1m as shown in
Fig. 4(a). It is modeled using four 2-node beam elements whose
cross-sections are discretized using two cubic cross-sectional ele-
ments. The clamped boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼
hz ¼ ae ¼ ap ¼ 0 is applied at one end while a torsional moment
Mx is applied at the other end. Each layer has the following mate-
rial properties:
� Material 1 (yellow colored in Fig. 4): Young’s modulus
E1 ¼ 200 GPa, shear modulus G1 ¼ 100 GPa, the initial yield
stress Y1 ¼ 200 MPa, and the linear hardening modulus
H1 ¼ 2 GPa.

� Material 2 (gray colored in Fig. 4): Young’s modulus
E2 ¼ 70 GPa, Shear modulus G2 ¼ 35 GPa, the initial yield stress
Y2 ¼ 100 MPa, and the linear hardening moduli
H2 ¼ 2; 20; 50; 100 GPa.
1

z

(a)

(b)

Fig. 9. Sandwich beam under cyclic loading problem (unit: m): (a) beam model (four be
total) and (b) solid model (400 solid elements, 11,907 DOFs in total).
The reference solutions are obtained using a 3D solid model
consisting of three hundred twenty 27-node solid elements
where the torsional moment is applied by using rigid links as
shown in Fig.4(b). Fig. 5 shows the torsional moment-angle
curves obtained using the present, 7-DOF, and 6-DOF beam mod-
els as well as the reference solid element model for various
ratios of hardening moduli. Results obtained using the present
beam model are almost identical to the reference solutions for
any combination of hardening moduli. The 7-DOF beam model
results begin to deviate significantly from the reference ones
after initial yield because it has the elastic warping DOF only.
Nevertheless, when the hardening modulus of two materials is
the same, it is observed that the solutions obtained using the
present and 7-DOF beam models are almost identical as shown
in Fig. 5(a). This is because the difference between the elastic
and plastic warping functions are relatively small and the elastic
warping has a primary effect as shown in Fig. 6(a). In all the
other cases, the plastic warping functions are quite different
from the elastic ones and the plastic warping becomes dominant
after a certain magnitude of torsion is applied. The axial dis-
placements on a cross-section obtained using the present beam
model are well matched with the reference axial displacements
demonstrating the usefulness and effectiveness of the proposed
warping model (Fig. 6). It is not surprising that the 6-DOF beam
model provides unreliable solutions as it does not account for
the warping effect at all.
5.2. Reinforced wide-flange beam problem

We consider a straight cantilever beam with reinforced wide-
flange cross-section whose length L is 2m as shown in Fig. 7(a).
It is modeled using two 2-node beam elements whose cross-
sections are discretized using nine cubic cross-sectional elements.
The clamped boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼ hz ¼ ae ¼
ap ¼ 0 is applied at one end while a torsional momentMx is applied
at the other end. The beam consists of steel (Material 1) and high
strength concrete (Material 2) whose material properties are:
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� Material 1 (yellow colored in Fig. 7): Young’s modulus
E1 ¼ 200 GPa, shear modulus G1 ¼ 100 GPa, the initial yield
stress Y1 ¼ 200 MPa, and the elastic perfectly plastic materials
(zero hardening modulus).

� Material 2 (gray colored in Fig. 7): Young’s modulus
E2 ¼ 70 GPa, shear modulus G2 ¼ 35 GPa, the initial yield stress
Y2 ¼ 200 MPa, and the elastic perfectly plastic materials (zero
hardening modulus).

The reference solutions are obtained using a 3D solid model
consisting of four thousand 8-node solid elements where the tor-
sional moment is applied as a distributed line load of p ¼ 12:5Mx

along the outer edges of the cross-section at the free end as shown
in Fig. 7(b).

Results clearly illustrate that the present beam model can pre-
dict the limit torsional moment accurately close to the reference
solution as shown in Fig. 8(a). Notably, the 7-DOF beammodel pre-
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dicts a significantly (about 10%) higher value for this moment,
which would be dangerous to be used in a structural design where
the limit load is of importance. Comparison of the von Mises stress
on a cross-section reveals that the key features of the propagation
of plastic regions can be reasonably captured using the proposed,
simple treatment for warping.

5.3. Sandwich beam under cyclic load problem

We consider a straight cantilever beam with sandwich cross-
section whose length L is 1m as shown in Fig. 9(a). It is modeled
using four 2-node beam elements whose cross-sections are dis-
cretized using three cubic cross-sectional elements. The clamped
boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼ hz ¼ ae ¼ ap ¼ 0 is
applied at one end while a cyclic torsional moment Mx is applied
at the other end. The material properties of comprising materials
are:
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� Material 1 (yellow colored in Fig. 9): Young’s modulus
E1 ¼ 200 GPa, shear modulus G1 ¼ 100 GPa, the initial yield
stress Y1 ¼ 100 MPa, and the linear hardening modulus
H1 ¼ 2 GPa.

� Material 2 (gray colored in Fig. 9): Young’s modulus
E2 ¼ 50 GPa, shear modulus G2 ¼ 25 GPa, the initial yield stress
Y2 ¼ 100 MPa, and the linear hardening modulus H2 ¼ 20 GPa.

The reference solutions are obtained using a 3D solid model
consisting of four hundred 27-node solid elements where the tor-
sional moment is applied by using rigid links as shown in Fig. 9(b).

Fig. 10(a) shows the history of the applied torsional momentMx

whose maximum value is increased whenever the load is reversed
so that yield occurs seven times in total. The cyclic moment-angle
curve obtained using the present beam model shows an excellent
performance of the proposed method in describing the nonlinear
z

2

(b)

(a)

x y

z

Fig. 11. Lateral post-buckling problem (unit:m): (a) beammodel (eight beam elements a
model (360 solid elements, 11,655 DOFs in total) and (c) two loading conditions.
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torsional behavior of composite beams even under cyclic loading-
unloading conditions. The use of the present beam model would
be much more efficient computationally when solving this kind
of complex problems because we only need to update two warping
DOFs only during analysis without evaluating the warping func-
tions again. As expected, the use of a single, elastic warping DOF
fails to reproduce the reference solution.

5.4. Lateral post-buckling problem

Finally we consider a straight cantilever beam with T-shaped
cross-section whose length L is 2m as shown in Fig. 11(a). It is
modeled using eight 2-node beam elements whose cross-sections
are discretized using four cubic cross-sectional elements. The
clamped boundary condition u ¼ v ¼ w ¼ hx ¼ hy ¼ hz ¼ ae ¼
ap ¼ 0 is applied at one end while two loading cases where the
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Fig. 13. Initial and deformed configurations obtained using the solid model and the
present beam model when Fz ¼ 250 and 500 kN in the lateral post-buckling
problem: (a) Load Case I and (b) Load Case II.
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same point force is applied either on the top or on the bottom are
considered as shown in Fig. 11(b). A small lateral perturbation load
(p ¼ 10N) is applied together to model an imperfection. The mate-
rial properties of comprising materials are:
� Material 1 (yellow colored in Fig. 11): Young’s modulus
E1 ¼ 200 GPa, shear modulus G1 ¼ 100 GPa, the initial yield
stress Y1 ¼ 100 MPa, and the linear hardening modulus
H1 ¼ 2 GPa.

� Material 2 (gray colored in Fig. 11): Young’s modulus
E2 ¼ 70 GPa, shear modulus G2 ¼ 35 GPa, the initial yield stress
Y2 ¼ 50 MPa, and the linear hardening modulus H2 ¼ 50 GPa.

The reference solutions are obtained using a 3D solid model
consisting of three hundred sixty 27-node solid elements.

Figs. 12 and 13 present the lateral post-buckling responses and
the corresponding deformed configurations, respectively, for two
different loading cases. The beam undergoes pure bending until
the applied load reaches to a critical buckling load. Then, it exhibits
the lateral displacements showing coupled twist-bend deforma-
tions. Two different post-buckling responses of the beam depen-
dent on the load position are accurately reproduced using the
present beam model. Using the 7-DOF beam model deteriorates
the response in the region of coupled twist-bend deformation. This
result confirms that the present beam model can be used effec-
tively for problems where twist-bend deformations are highly
coupled.

6. Conclusions

We present in this paper an efficient method to represent the
intricate warping effect for elastoplastic torsional analysis of com-
posite beams. The proposed method models the elastoplastic
warping function, which evolves with the plastic deformation, as
a linear combination of two asymptotic warping functions. These
functions are calculated first before performing nonlinear analysis
by solving the extended St. Venant equations under two condi-
tions: purely elastic and fully plastic conditions. Corresponding
warping DOFs are only updated during analysis without calculat-
ing the warping function again, which makes the method compu-
tationally efficient. An excellent performance of the proposed
method is demonstrated in several numerical examples.
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